Nuclear plant how does it work




















This heat can then be used to generate steam, which drives turbines for electricity production. In order to ensure the nuclear reaction takes place at the right speed, reactors have systems that accelerate, slow or shut down the nuclear reaction, and the heat it produces.

This is normally done with control rods, which typically are made out of neutron-absorbing materials such as silver and boron. Two examples of nuclear fissioning of uranium, the most commonly used fuel in nuclear reactors. Nuclear reactors come in many different shapes and sizes — some use water to cool their cores, whilst others use gas or liquid metal. Further information on the many different types of reactor around the world can be found in the Nuclear Power Reactors section of the Information Library.

Nuclear reactors are very reliable at generating electricity, capable of running for 24 hours a day for many months, if not years, without interruption, whatever the weather or season. Additionally, most nuclear reactors can operate for very long periods of time — over 60 years in many cases. A number of different materials can be used to fuel a reactor, but most commonly uranium is used.

Uranium is abundant, and can be found in many places around the world, including in the oceans. Heating oil. Also in Oil and petroleum products explained Oil and petroleum products Refining crude oil Where our oil comes from Imports and exports Offshore oil and gas Use of oil Prices and outlook Oil and the environment.

Also in Gasoline explained Gasoline Octane in depth Where our gasoline comes from Use of gasoline Prices and outlook Factors affecting gasoline prices Regional price differences Price fluctuations History of gasoline Gasoline and the environment. Also in Diesel fuel explained Diesel fuel Where our diesel comes from Use of diesel Prices and outlook Factors affecting diesel prices Diesel fuel surcharges Diesel and the environment.

Also in Heating oil explained Heating oil Where our heating oil comes from Use of heating oil Prices and outlook Factors affecting heating oil prices. Hydrocarbon Gas Liquids. Natural gas. Also in Hydrocarbon gas liquids explained Hydrocarbon gas liquids Where do hydrocarbon gas liquids come from? Transporting and storing Uses of hydrocarbon gas liquids Imports and exports Prices. Also in Natural gas explained Natural gas Delivery and storage Natural gas pipelines Liquefied natural gas Where our natural gas comes from Imports and exports How much gas is left Use of natural gas Prices Factors affecting natural gas prices Natural gas and the environment Customer choice programs.

Also in Coal explained Coal Mining and transportation Where our coal comes from Imports and exports How much coal is left Use of coal Prices and outlook Coal and the environment. Renewable sources. Renewable energy. Biofuels: Ethanol and Biomass-based diesel. Also in Hydropower explained Hydropower Where hydropower is generated Hydropower and the environment Tidal power Wave power Ocean thermal energy conversion.

Also in Biofuels explained Biofuels Ethanol Use and supply of ethanol Ethanol and the environment Biomass-based diesel fuels Use of biomass-based diesel fuel Biomass-based diesel and the environment.

Also in Wind explained Wind Electricity generation from wind Where wind power is harnessed Types of wind turbines History of wind power Wind energy and the environment. Also in Geothermal explained Geothermal Where geothermal energy is found Use of geothermal energy Geothermal power plants Geothermal heat pumps Geothermal energy and the environment. Also in Solar explained Solar Photovoltaics and electricity Where solar is found and used Solar thermal power plants Solar thermal collectors Solar energy and the environment.

Secondary sources. Also in Electricity explained Electricity The science of electricity Magnets and electricity Batteries, circuits, and transformers Measuring electricity How electricity is generated Electricity in the United States Generation, capacity, and sales Delivery to consumers Use of electricity Prices and factors affecting prices Electricity and the environment.

The moderator helps slow down the neutrons produced by fission to sustain the chain reaction. Control rods can then be inserted into the reactor core to reduce the reaction rate or withdrawn to increase it. The heat created by fission turns the water into steam, which spins a turbine to produce carbon-free electricity. All commercial nuclear reactors in the United States are light-water reactors. This means they use normal water as both a coolant and neutron moderator.

These reactors pump water into the reactor core under high pressure to prevent the water from boiling. The water in the core is heated by nuclear fission and then pumped into tubes inside a heat exchanger.

Those tubes heat a separate water source to create steam. The steam then turns an electric generator to produce electricity. BWRs heat water and produce steam directly inside the reactor vessel.



0コメント

  • 1000 / 1000